The generalized Stieltjes transform and its inverse

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Stieltjes Transform and Its Inverse

The generalized Stieltjes transform (GST) is an integral transform that depends on a parameter ρ > 0. In previous work a convenient form of the inverse transformation was derived for the case ρ = 3/2. This paper generalizes that result to all ρ > 0. It is a well-known fact that the GST can be formulated as an iterated Laplace transform, and that therefore its inverse can be expressed as an iter...

متن کامل

The Iterated Stieltjes Transform.

THEOREM 4. If Q is a Lie algebra of type All then n > 2 and $ SJ' where J is an i.a.a. of second kind in a simple algebra [. Thus a complete classification of Lie algebras of type A,, depends on the classification of simple associative algebras of second kind and of i.a.a.'s relative to cogredience in these algebras. It can be shown that the latter problem is essentially one of ordinary cogredi...

متن کامل

Extending the Stieltjes Transform

The classical Stieltjes transform is extended to a subspace of Boehmians. The transform is shown to be an analytic function in the half-plane Re z > 0. Some Abelian type theorems are established.

متن کامل

Computing the Hilbert transform and its inverse

We construct a new method for approximating Hilbert transforms and their inverse throughout the complex plane. Both problems can be formulated as Riemann–Hilbert problems via Plemelj’s lemma. Using this framework, we rederive existing approaches for computing Hilbert transforms over the real line and unit interval, with the added benefit that we can compute the Hilbert transform in the complex ...

متن کامل

On the Inverse Laplace-stieltjes Transform of A-stable Rational Functions

Let r be an A-stable rational approximation of the exponential function of order q ≥ 1 and let t > 0. It is shown that the inverse LaplaceStieltjes transforms αn : s→ αn∗(ns t ) of rn(z) := r n( tz n ) converge in Lp(R+) to the Heaviside function Ht with a rate of t1/pn−1/2p(ln(n+1))1−1/p. Moreover, for 0 ≤ k ≤ q, the k-th antiderivatives of αn converge in Lp(R+) to the k-th antiderivative of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2005

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.1825077